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ABSTRACT

The status and summary of recent results obtained in various
studies aimed at developing means for a priori predicting the nonlinear
behavior of unstable liquid-propellant rocket motors are described. The
studies under consideration include: (1) Determination of the nonlinear
behavior of unstable rockets with the aid of a second order theory; (2)
The development of a third order theory; (3) Investigation of nonlinear
axial instability in liquid rockets; and (4) Investigation of the behavior

of the unsteady combustion response function.



SUMMARY

Brief descriptions of combustion instability studies performed
at Georgia Institute of Technology during the second year of financial
support under NASA grant NGR 11-002~083 are provided.

This project is concerned with the application of the Galerkin
method in the prediction of the nonlinear behavior of unstable liquid-
propellant rocket motors. In a study of transverse instabilities,
numerical results predicting stable limit cycles, triggering limits,
and nonlinear pressure waveforms were obtained. The dependence of the
engine's nonlinear stability characteristics upon various engine para-
meters was also studied. The importance of various types of nonline-

arities present in the conservation equations was also investigated.

During this same period investigation of the nonlinear axial
mode instability problem was continued. Three approximate methods of
solution have been devised, and computer programs based on these methods

are presently being developed.

A gtudy of the behavior of the unsteady combustion response func-

tion was also initiated during this period.



INTRODUCTION

During the first year of NWASA support for this project an approxi=-
mate mathematical technique was successfully applied in the solution of
a number of combustion instability problemsl. Special attention was
given to the study of nonlinear effects. As part of this effort a non-
linear second-order theory, which formed the basis for a computer pro-
gram designed to predict the nonlinear behavior of unstable liquid pro-

pellant rocket motors, was developed.

The work performed during the second year of this project repre-
sents an extension and diversification of the research performed during
the first year. Several different aspects of nonlinear combustion in-
stability were considered and the following investigations were conducted:
(1) the study of moderate amplitude transverse instability based on the
second order theory developed during the first year, (2) the development
and application of a third order theory to study large amplitude trans-
verse instabilities, (3) the study of nonlinear axial mode instability,
and (4) the study of the behavior of unsteady combustion response func-

tions.

Some of the results obtained with the aid of the second order
theory were presented at the 6th ICRPG Combustion Conference held in -
Chicago during September 9-11, 1969. Additional results appear in the

following publications:

(1) Powell, E. A., and Zinn, B. T., "Nonlinear Combustion In-
stability in Liquid-Propellant Rocket Engines," published
in the Proceedings of the 6th ICRPG Combustion Conference,
December 1969, pp. 199-208.

(2) Powell, E. A., "Nonlinear Combustion Instability in Liquid
Propellant Rocket Engines," Georgia Institute of Technology,



Department of Aerospace Engineering, (Ph.D. Thesis), 1970.

(3) Strahle, W. C., "A Note on the Forgotten Velocity Effect

1

in Combustion Instability of Liquid Rockets," accepted for

publication in Combustion Science and Technology.

(4) Strahle, W. C., "New Considerations on Causes for Combus-

"

tion Instability in Ligquid Propellant Rockets, accepted

for publication in Combustion Science and Technology.

The following paper has been accepted for presentation (and for publi-
cation in the proceedings of the conference) at the Thirteenth Inter-
national Symposium on Combustion, to be held at the University of Utah
during August 23-29, 1970:

Zinn, B. T., and Powell, E. A., "Nonlinear Combustion

Instability in Liquid Propellant Rocket Engines.”
Brief description of the results obtained in the above-mentioned
investigations are provided in the following sections. These sections

are followed by a brief description of proposed future research.

Results of the Second Order Transverse Instability Studies

During the first year of this project it was shown6 that when
the mean flow Mach number is small the wave motion inside the combustor
of a ligquid~-propellant rocket engine can be described, to second order,

by the following nonlinear partial differential equation:

2 — -
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In the above equation, & is the velocity potential defined by X' = Vo,

E is the steady state velocity, and Wé is the mass source perturbation
that results from the unsteady response of the burning process to the
pressure oscillations. This section presents a summary of the results
obtained when Eq. (1) was used to study the nonlinear stability charac-
teristics of cylindrical combustion chambers in which the ligquid pro-
pellants are injected uniformly across the injector face and the combus-
tion process is distributed throughout the combustion chamber. Crocco's
time-lag hypothesis was used to describe the unsteady combustion process;

hence the unsteady mass source 1s given by:

d_ —
Wnl1 = - Yn ﬁ[@t(r,eazpt) - @t(r,e,z,t - T)] (2)

where n is the pressure interaction index and T is the steady state
value of the time=lag. It was also assumed that the hot combustion
products leave the combustion chamber through a multi-orifice quasi-~

steady nozzle.

In order to study transverse combustion instability, an approxi-
mate solution for the velocity potential was constructed as a series
expansion in the tangential acoustic modeg, and each of these modes was
multiplied by an undetermined time-dependent coefficient. Using this
series expansion and following the mathematical procedure outlined in
Ref. 2 the solution of the original partial differential equation was
reduced to the sclution of a system of coupled nonlinear ordinary dif-
ferential equations that control the behavior of the unknown time=-
dependent amplitudes. These equations form the basis of a computer
program for calculating the nonlinear transverse stabllity character-

istics of liquid propellant rocket engines.

Extensive numerical computations using series solutions containing
various combinations of the chamber's natural modes were performed. The
calculated results indicated that a series expansion consisting of the
first tangential (1T), second tangential (2T), and first radial (1R)



modes provides a good description of the engine stability characteristics.
Thus the velocity potential was approximated by the following series ex-

pansion:

~

¢ = BOl(t)Jb(SOlr)
+ [All(t)sine + Bll(t)cose]Ji(sllr)
+ [Agl(t)sinEG + B2l(t)00329]Jé(S21r) (3)

Numerical calculations obtained using the above three-mode series are
presented with the following objectives in mind: (1) the prediction of
the final amplitude for transverse mode instability; (2) the determina-
tion of the waveform and frequency of the nonlinear oscillations; and
(3) the determination of the dependence of the resulting oscillation
upon (a) the initial disturbance, (b) the combustion parameters n and
T, (c) the magnitude of the steady state Mach number at the nozzle

entrance, and (d) the combustor's length-to-diameter ratio.

For a given initial disturbance it was possible to follow the
time evolution of the three modes included in the series expansion.
The computations showed that in the region of the (n, T) plane where
the 1T mode is the only linearly unstable mode in the series (i.e.,
Region I of Fig. 1) an initial disturbance develops into a finite-
amplitude oscillation. The magnitude of the final amplitude depends
on the nature of the initial disturbance (i.e., spinning or standing)
but not on the magnitude of the initial disturbance. These studies
showed that in this region of the (n, T) plane, the}magnitude of the
final amplitude is limited by nonlinear coupling between modes, whereby
energy is transferred from the linearly unstable 1T mode to the linearly
stable modes (2T and 1R). More complex behavior was observed in regions
of the (n, 7) plane where the 1R mode is unstable and the 1T mode is
either stable or unstable. In such regions (i.e., Region III of Fig. 1)
"back-and-forth" energy transfer between the modes produces a finite-

amplitude, highly-modulated ogcillation which exhibits some character-



istics of both modes.

As seen in Fig. 2, once a stable limit cycle is reached the
time dependent coefficients (i.e., mode-amplitudes) appearing in Eg.
(3) are nearly sinusoidal functions of time. In most of the cases
computed the 1R and 2T modes had a much smaller amplitude than the
1T mode and were oscillating at twice the frequency of the 1T mode.
Using the mode-amplitudes the nonlinear pressure waveforms at any
location in the chamber were easily computed. Typical wall pressure
waveforms for standing 1T oscillations are shown in Figs. (3) and (4).
These waveforms exhibit a pronounced second harmonic distortion, re=-
gsulting in sharp peaks and shallow minima. Also predicted is a small~
amplitude, double-frequency oscillation at the locations for the (lT)

pressure nodes (i.e., 8 = 0 and 6 = ).

The predicted dependence of the final amplitude upon the com~-
bustion parameters n and T is shown in Fig. (5) for a standing type
instability. In this plot 6 is the displacement of the operating
point (n, T) from the neutral stability limit measured along a line
of constant T. Positive values of § indicate displacements into the
linearly unstable region. From this figure it is seen that the limiting
amplitude increases with both increasing vertical displacement (i.e.,
increasing the value of n) and with increasing time-lag. For the 1T
spinning instability similar plots were obtained, and they are compared
with those for standing oscillations in Fig. (6). In most of the cases
consldered an initially spinning wave disturbance resulted in insta-
bilities with larger final amplitude oscillations. The frequency of
oscillation was also found to depend on n and 7. As seen from Fig.

(7) the frequency decreases with increasing amplitude (i.e., increasing
n) and with increasing T. The above results were used to construct
nonlinear (n, T) stability maps (see Fig. (8)) showing the dependence

of the final amplitude upon the values of n and T.

The second order theory was also used to determine the dependence

of the final amplitude upon the engine's mean flow ag well as the engine's
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length. In these studies the values of n and T were held fixed and the
unstable behavior for various values of ﬁe (i.e., Mach number at the
nozzle entrance) and Z, (i.e., dimensionless length) was investigated.
The results of this study are shown in Figs. (9) and (10). It is seen
from Fig. (9) that an increase in ﬁe usually resulted in an increase in
the limiting pressure amplitude; the exception occurring at smaller
values of T. Figure (10) shows that for fixed values of n, T, and T,
increasing the length Z resulted in a decrease in the limiting value

of the pressure amplitude.

Third Order Trangverse Investigations

During the second year of this project a third order theory was
developed. This theory represents an attempt to relax some of the
restrictions imposed on the second order theory. The latter included
such restrictions as small Mach number mean flow, irrotationality of
the flow, and the presence of moderate amplitude waves. In the third
order analysis no terms were neglected in the conservation equations;
the only approximations used being those related to the absence of
droplet drag and constancy of droplet stagnation enthalpy, both of

which were used in the second order theory.

Under the above assumptions the conservation eqguations can no
longer be combined to obtain a single equation governing the behavior
of the velocity potential. Instead a system of partial differential
equations must be solved. The development of these equations will now
be briefly described. Considering only transverse oscillations the

velocity components can be defined as follows:

4\

i
2|
=

g\

H
8 L
BIX

()

where v’ and w’ respectively represent the radial and tangential
velocity components and T and { are quasi-potentials. Using Eqgs. (L)

the appropriate system of conservation equations becomes:
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Continuity:

2[5t v Ty +5 T * 5 G (5)
+ e, +;l§ CqPg p'%g— - W =0
Radial momentum:
(5 +p [N, + 0, + ';15 ¢y - ;15 ]+ =0 (6)

Tangential momentum:

— J; 1 _J_-_ r
Energy:
dh’ dh' dh’ ;
— ’ s S 1 S x:£ éE_ il J— ’ It
7+ >[ st Pt ;5 Co 55—] Ty ot * 3z (pu)hs +Wbhg =0
(8)

Equation of State:
/o ’ 1 ot y-d [ - ’ ( 2 1 2) /_2]
p’ =phl +p'h  +pml - | (F e )M +5 ;) +0'T (9)
In the above equations p 1s the density, p is the pressure, and hS is

the stagnation enthalpy.

To complete the theory higher order expressions for the burning
rate term and nozzle admittance relation are needed. Unlike the

expressions describing the gas dynamics of the problem these expressions
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contain terms of all orders and they need to be truncated to include
terms up to third order only. In deriving these expressions it was

assumed that the combustor's mean flow Mach number was small. Using
Crocco's time-lag hypothesis the third order burning rate expression

is given by the following expression:

/ du [, ’ n-1 742 ro_ 1
Wo-n =@ -p) + 5 () -np 12

/

op. .t
+ 2 ) gt [ e (e} (10)
T t_a:

where p’ = p'(r,0,t-T).
T

Due to the complexity of Egs. (5) through (9), the nonlinear
behavior of a single transverse mode was investigated by approximating
each dependent variable as the product of an amplitude function and the
spatial dependence of that mode. The approximate solutions are ex~

pressed in the following form:

~7

p = Ap(t)Ymn(rae)

=
1l

A ()Y, (,8)

N
il

Ag(t)Ymn(r,e)

3
il

! Ap(t)Ymn(r,e)

=g
il

A (8) (x,0) (11)
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where Ymn(r,e) = cosm@Jm(Smnr). Introducing the approximate solutions
into Egs. (5) through (9) and applying the mathematical technique
described in Ref. 2 yields a system of nonlinear ordinary differential
equations to be solved for the unknown A's. A computer program was

developed to determine these amplitude functions mumerically.

As a check on the analysis, linear stability limits were computed
using the linearized version of the system of equations derived for the
third order theory. Except for small corrections of the order of ﬁi
these limits agreed with those computed from the linearized version of

the second order theory.

Using the third order theory numerical solutions were obtalned
for the following two cases: (1) the approximate solutions consisted
of the first tangential mode only, and (2) the approximate solutions
consisted of the first radial mode only. The systems of differential
equations governing these two cases differed in geveral respects. The
equations governing the behavior of the 1R mode contained both gquadratic
and cubic nonlinearities while those describing the behavior of the 1T
mode contained only cubically nonlinear terms. The radial mode equa-
tions also contained nonlinearities in the combustipn mass source terms
whereas a nonlinear driving term did not appear in the equations for
the 1T mode.

The numerical results show that the above-mentioned differences
are important. The important characteristics of the 1T mode solutions
will now be summarized. As seen from Fig. (11) the pressure and velo-
clty waveforms are nearly sinusoidal in shape, a result in contrast to
the results of the second order theory. The effect of the combustion
parameters n and T upon the final amplitude of the pressure oscillation
is shown in Figs. (12) and (13). For values of T < 2.1 in the linearly
unstable region, stable limit cycles were found as shown in Fig. (12).
In each case the final amplitude attained for given values of n and T
was congiderably larger than the amplitude predicted by the second

order theory. The possibility of "triggering" combustion oscillations
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was found to exist for T > 2.1. Figure (13) shows the dependence of
the triggering amplitude with n and 7 for standing 1T initial disturb-
ances. For given values of n and T an initial disturbance with ampli-
tude slightly less than the threshold value, given by the curve, will
decay to zero amplitude. No stable limit cycles could be found in this
region. A disturbance with amplitude slightly above the critical value
was found to grow without limit. The differences between these third
order results and those obtained from the second order theory are
attributed to the lack of coupling between modes which results from

using a one-mode expansion.

The results obtained using an expansion consisting only of the
1R mode will now be summarized. As seen from Fig. (14) the pressure
waveforms resemble sinusoids which are shifted up (for radial positions
near the axis, r = 0) or down (for stations near the wall, r = 1).
Figure (15) shows the dependence of the limit cycles upon n and T.
Unlike the 1T mode, gtable limit cycles for 1R instability were found
in the vicinity of the neutral stability limit for both linearly stable
and linearly unstable values of n and T. For an engine operating in
the linearly stable region an unstable 1limit cycle (i.e., triggering
limit) was found with an amplitude below that of the stable limit cycle.
Also predicted is the minimum value of n (for a given T) below which it
is imposgible to trigger combustion oscillations. The curves shown in
Fig. (15) show that as T is increased, combustion oscillations are more
easily triggered and the amplitude of the resulting ogcillations is
higher. It 1s also seen that the unstable range in n, for which trig-
gering of combustion instability is possible, becomes larger with in-
creasing values of the time~lag. These golutions are qualitatively
gimilar to those obtained for the 1R mode using the second order theory

and a one-mode expansion (see Ref. 1).

In the study of the 1R mode, the effect of various nonlinear
terms appearing in the governing equations was evaluated. PFrom the
regults of this study 1t was concluded that the nonlinearities in the

combustion mass source are very important in determining the limiting
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amplitude of triggered IR mode instability. On the other hand the
cubically nonlinear terms originating from the gasdynamics of the

problem have only a minor effect.

Some of the third order solutions predicted the anomalous result
that under certain conditions the combustor's pressure may become nega~
tive. The occurrence of negative pressures in the approximate solutions
is a result of the assumed spatial dependence of the series solutions.
To overcome this shortcoming work is presently in progress to develop

a multi-mode third order theory.

Nonlinear Axial Mode Ingtability

In a separate study, the case of axial type instability in a
combustor with a distributed combustion process is currently being
investigated. Difficulties were encountered in the early stages of
the study, but it now appears that they have been resolved. The work

done to date will now be briefly summarized.

The nonlinear partial differential equation governing longitudi-

nal combustion oscillations, correct to second order, is given by:

_ du ’
8, =8, 288 - (y-l)@t@zz CE IR - P

ZZ bt =0 (12)

In Eg. (12) the mass source term is again described by Crocco's time-

lag hypothesis to gilve:
W = - wn 9@[@ (z,8) - 3, (= t-?):l (13)
m dz L7t £t

The appropriate boundary conditions arise from the presence of a solid
wall boundary condition at the injector face (z = O) and a quasi-steady

nozzle at z = 1. The boundary conditions are given by:
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8 (0) =0 (1)

8 (1) = - Xél U3, (1) (15)

In order to obtain an approximate solution of Eq. (12) a series
~ N
expansion must be specified for &(z,t); that is, & = T Bk(t)@k(z).
k=0
The initial phases of this investigation have been primarily concerned

with the proper selection of the approximating functions @k(z).

If the trial functions Py do not satisfy the boundary conditions,
then the resulting error at the boundary condition must be minimized,
in some sense, in combination with the error arising from the fact that
the trial function does not, in general, satisfy the differential equa-
tion. This is accomplished by imposing the following restriction (see

Ref. 2):

JV.REPde._ Is Ry dS = 0 (16)

where the residuals RE and RB are the errors incurred by substituting
the approximate solutions into the differential equations and boundary
conditions respectively. If the trial functions satisfy the boundary
conditions then the residual RB vanishes. Both approaches are currently
under study, although most of the work done to date has been with trial

solutions that do not satisfy the boundary conditions.

Obviously, a proper choice of the trial functions is a pre-
requisite for obtaining valid results. The first trial series for

8(z,t) was taken to be composed of the following acoustic modes:

8(z,t) = kgo [Ak(t)sin(knz) + Bk(t)cos(knz)] (17)
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This expansion does not satisfy either the inJjector or the nozzle
boundary conditions. Using Eq. (16) yields a set of coupled nonlinear
ordinary differential equations to be solved for the Ak's and Bk's.
Numerical calculations proved this trial series to be divergent for

all the investigated cases (i.e., all investigated values of n, T).

Considerations of the expected physical behavior of the resulting
pressure oscillations suggested the omission of the sine terms from the

expansion given by Eq. (17), hence:
N
8(z,t) = X B (t)cos(kmz) (18)
k=0 X

Preliminary results using this cosine series are favorable. The time
dependent coefficient, Bo(t) corresponding to the spatially uniform

term in the series (i.e., 9, = 1) was found to oscillate with a lower
frequency than the remaining terms, but with a larger amplitude. This
term corresponds to chugging-type instability. Results with and without
this term present in the series expansion will be obtained; a comparison
of these results with available experimental data will determine whether

Bo(t) should be included in the approximate series solution.

The second approach taken in selecting an approximate solution
was to construct expressions that satisfy both the boundary condition
at the injector face (i.e., z = 0) and that at the nozzle entrance
(i.e., z = 1). Two methods are presently under consideration. One

such method is to select an approximate solution of the form:

N
8(z,t) = A(t)F(z) + G(z) kEO Bk(t)cos(knz) (19)

where the summation term satisfies homogeneous boundary conditions and
the remaining term A(t)F(z) satisfies both boundary conditions. For

example, one such solution was found to be:
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8(z,t) = zzexp[- Zt/B] + 22(2 ~ 1) kgo Bk(t)cos(knz) (20)

where g = Xéi ﬁe. It should be noted that the first term is necessary
to satisfy the nozzle admittance condition, but its effect on &(z,t)

decreases with time.

The second method of satisfying the boundary conditions is to

use a cosine series with time dependent "eigenvalues" as follows:

N
8(z,t) = kEO Bk(t) cos{[kﬂ + ek(t)]%} (21)

The above expression satisfies the boundary condition at z = 0. Apply-
ing the boundary condition at z = 1 (i.e., Eq. (15)) yields the follow-
ing relation between Bk(t) and ek(t):

dek dBk
[kﬂ + ek(t) + 8 ?ﬁ;]Bk(t)tansk(t) -8 35 =0 (22)

Combining Egs. (22) with the equations resulting from applying Eq. (16)
results in a system of 2(N+l) nonlinear ordinary differential equations

for the 2(N+1l) unknowns, €k(t) and Bk(t)'

At present this investigation is at a preliminary stage, hence
no numerical results are available. Computer programs are belng devel~
oped based upon the three approaches discussed above. These will be
used to determine both the linear and nonlinear stability limits in the
(n, 7) plane and to study the possibility of triggering axial combustion

oscillations.

Combustion Response Studies

With a view in mind to determine a more realistic combustion
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response function for incorporation into the Galerkin method two
detailed studies were carried out concerning combustion procesges.

The first study concerned the linear acoustic response of the vapori-
zatlon process in the vicinity of the stagnation pointsg the major
difference from previocus treatments was the assumption of no internal
liquid circulation and the consequent existence of a thermal wave in

the liguid in the steady state. The reasons for doing this study were
that the thermal wave assumptlon had never been used before and it is
precisely the thermal wave which is responsible for combustion response
peaks in the appropriate frequency range in solid propellant response
theory. A sample fregquency response plot for two fuels is shown in

Fig. (16). To draw this plot three items concerning the acoustics must
be specified - the mode type, the position of the droplet in the chamber
and the relative velocity direction betwzen the chamber gases and the
droplet. While Fig. (16) is a representative average for a longitudinal
mode, significant differences can appear for transverse modes. The
major item, however, is that the frequency response is fairly flat even
though there is mild variation in the frequency range of interest to
instability. This relatively flat behavior is in accord with ﬁreatments
of the vaporizatlion process using aSsumptions different than those used

in the present study.

A second study concerned the effects of combustion process
velocity sensitivity on stabilityu. There has been a general lack of
recognition of the velocity effect's importance and it is believed
that a reconciliatilon between two presently accepted but different
instability theories can be affected by more detailed understanding of
the velocity effect. Figure (17) demonstrates that a combustion rate
instantaneously proportional to velocity raised to some power n can
cause longitudinal instabilility; ¥ is the location of a concentrated
combustion front expressed as a fraction of the chamber length. While
the required n value is high (> 1) the demonstration is that velocity

sensitivity is at least an important contribution to stability criteria.

The outcome of the above studies has been the recommendation of
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a new response function for incorporation into the Galerkin method3.
This function consists of the sum of two terms - one describing the
variable vaporization rate, which can include velocity effects, and
one involving the variable combustion rate. It is shown in Ref. 3
that this formulation removes a rather critical assumption in the

Crocco time lag theory.

Future Investigations

Future research efforts will be devoted to the following investi-
gations: (1) determination of nonlinear stability limits using the
second order theory, (2) determination of the characteristics of large
amplitude transverse wave instability, (3) determination of the charac-
teristics of nonlinear axial instability, and (L4) investigation of the

unsteady combustion response functions.

The second order computer programs that were developed to date
are now being used to determine stability maps (similar to the one
presented in Fig. 8) for rocket combustors characterized by various
values of the Mach number and different length-to-diameter ratios.
The possibility of using such maps together with experimental data,
to determine the operating point (i.e., values of n and T) of actual
rocket motors will be explored. Additional investigations concerning
the effect of initial conditions and the convergence of the assumed
series expansions will be conducted. A report of the second order
results, which includes a fully documented computer program, will be

prepared in the near future.

The behavior of large amplitude transverse instability will be
studied using a third order multi-mode theory which is currently under
development. Results similar to those obtained with the aid of the
second order theory will be obtalned, and a comparison will be made
with the second order results to determine the range of applicabllity

of the gecond order theory.
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Present efforts to determine the best analytical approach for
the solution of the axial instability problem are expected to be com=-
pleted shortly. Upon completion of this investigation the chosen
method will be used to determine the nonlinear stability characteristics

of wvarious rocket combustors.

A nonlinear response function based on instantaneous high Rey-
nolds number vaporization response will be incorporated into the second
order theory. One of the objectives of this study is to compare trig-
gering limits obtained by using the Galerkin method with the results
obtained in Ref. (5). These results will also be compared with the
previous second order results in order to determine differences in
mode~-excitation, magnitude of triggering amplitude, and limit cycle

amplitude.
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